Compressed Spectrum at the LHC

Bhaskar Dutta

Texas A&M University

LHC After the Higgs Santa Fe, 2014

Big Picture

→ We want to understand the next layer of matter at the LHC - Dark Matter

→DM content determination mostly depend on colorless particles,

e.g., sleptons, staus, charginos, neutralinos, etc. and also depend on small mass gaps (ΔM) between lightest (LSP) and next to lightest particles (NLSP)

→ How do we produce these non-colored particles and the DM particle at the LHC? Can we understand the origin of DM?

Dark Matter: Thermal

Production of thermal non-relativistic DM:

$$DM + DM \iff f + \bar{f}$$

Non-relativistic

Freeze-Out: Hubble expansion dominates over the interaction rate

Dark Matter content: $\Omega_{\rm DM} \sim \frac{1}{\langle \sigma v \rangle}$

$$\langle \sigma v \rangle = 3 \times 10^{-26} \frac{cm^3}{s}$$

0.001 0.0001 Increasing $\langle \sigma_{\mathbf{A}} \mathbf{v} \rangle$ 10-11 freeze out \Rightarrow $T_f \sim \frac{m_{DM}}{20}$ $\Rightarrow \langle \sigma v \rangle = 3 \times 10^{-26} \frac{cm^3}{s}$ Assuming: $\langle \sigma v \rangle_f \sim \frac{\alpha_\chi^2}{m_\chi^2}$ $\alpha_\chi \sim O(10^{-2})$ with $m_\chi \sim O(100)$ GeV leads to the correct relic abundance

Dark Matter: Thermal

Suitable DM Candidate:

Weakly Interacting Massive Particle (WIMP)

Typical in Physics beyond the SM (LSP, LKP, ...)

Most Common: Neutralino (SUSY Models)

smaller annihilation cross-section

Neutralino: Mixture of Wino, Higgsino and Bino

Larger annihilation cross-section, smaller mass gaps

Wino, Higgsino \rightarrow smaller ΔM is inevitable between NLSP & LSP Bino \rightarrow May require smaller ΔM between NLSP &LSP for thermal DM Can we establish these features at the LHC?

Dark Matter: Non-Thermal

 $<\sigma_{ann}v>$: different from thermal average, $\Omega_{\rm DM}\sim \frac{1}{\langle\sigma v\rangle}$ is not 26% Non-thermal DM can be a solution

DM from the decay of heavy scalar field, e.g., Moduli decay

[Moduli: heavy scalar fields gravitationally coupled to matter]

Decay of moduli/heavy field occurs at:

$$T_r \sim c^{1/2} \left(\frac{m_\phi}{100 \text{TeV}}\right)^{3/2} (5 \text{MeV})$$

 $T_r \sim \text{MeV}$: Not allowed by BBN

For $T_r < T_f$: Non-thermal dark matter

Abundance of decay products $Y_{\phi} \equiv \frac{3 T_r}{4 m_{\phi}}$

DM content: also need to consider the DM annihilation.

radiation domination

Dark Matter: Non-thermal

- For $T_r < T_f$, larger annihilation cross-section $\langle \sigma_{ann} v \rangle_f = \langle \sigma_{ann} v \rangle_f^{th} \frac{T_f}{T_r}$ is needed for $\Omega \rightarrow 26\%$
- For $T_r << T_f$, Yield $Y_\phi = \frac{3T_r}{4m_\phi}$ is small enough (10⁻¹⁰) DM will be produced without any need of annihilation [Note: For $m_{DM} \sim 10$ GeV, Y_ϕ is needed to be $\sim 10^{-10}$ to satisfy the DM content]

Outcome:

- ➤ Large (Wino/Higgsino) and small annihilation (Bino) cross-section from models are okay
- > We may not need any annihilation

Since $\phi \to DM$ + other particles, abundance (for $T_r << T_f$): 10⁻¹⁰

 \succ The Baryon and the DM abundance are correlated $\sim 10^{-10}$

Barrow, '82; Kamionkowski ,Turner, '90; Gelmini, Gondolo, Soldatenko, Yaguna, '07 Allahverdi, Dutta, Sinha,'09,'10,'11,'12,'13; Acharya,Kane, Kumar,Watson, '09,'10 6

Thermal, Non-thermal

- >LHC: Measurement of DM annihilation cross-section, smaller ΔM is crucial
- $<\sigma_{ann}v>$: Large \rightarrow multicomponent/non-thermal; Small \rightarrow Non-thermal

>DM annihilation from galaxy, extragalactic sources:

Annihilation into photons: Fermi, H.E.S.S.

Annihilation into neutrinos: IceCube

Annihilation into electron-positrons: AMS

Small DM effects in the annihilation cross-section are absent in the data from the present epoch

LHC status...

- → Recent Higgs search results from Atlas and CMS indicate that m_h ~126 GeV
 - in the tight MSSM window <135 GeV

$$m_{\widetilde{q}}$$
 (1st gen.) ~ $m_{\widetilde{g}}$ ≥ 1.7 TeV

- \rightarrow For heavy $m_{\widetilde{q}}, m_{\widetilde{g}} \geq 1.3 \text{ TeV}$
- → $\widetilde{t_1}$ produced from \widetilde{g} , $m_{\widetilde{t_1}} \ge 700$ GeV → $\widetilde{t_1}$ produced directly, $m_{\widetilde{t_1}} \ge 660$ GeV (special case)
- ightharpoonup \widetilde{e} / $\widetilde{\mu}$ excluded between 110 and 280 GeV for a mass-less $\widetilde{\chi}_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}$ or for a mass difference >100 GeV, small ΔM is associated with small missing energy
- $\widetilde{\chi}_1^\pm$ masses between 100 and 600 GeV are excluded for mass-less $\widetilde{\chi}_1^0$ for $\widetilde{\chi}_1^\pm$ or for the mass difference >40 GeV decaying into e/µ

LHC Constraints and DM

LHC constraints on first generation squark mass + Higgs mass:

Natural SUSY and dark matter [Baer, Barger, Huang, Mickelson,

Mustafayev and Tata'12; Gogoladze, Nasir, Shafi'12, Hall, Pinner, Ruderman,'11;

Papucchi, Ruderman, Weiler'11,

Higgs mass 125 GeV & Cosmological gravitino solution

Allahverdi, Dutta, Sinha'12

→ Higgsino dark matter

Higgsino dark matter has larger annihilation cross-section Typically $> 3 \times 10^{-26} \text{cm}^3/\text{sec}$ for sub-TeV mass

→ Thermal underproduction of sub-TeV Higgsino

Higgsino DM has small ΔM

→ Can we establish this scenario at the LHC?

Small △**M**

Small mass gaps between LSP and NLSP→
coannihilation→increase the annihilation cross-section

Small AM via cascade

The signal:

jets + leptons+ t's +W's+Z's+H's + missing E_T

Small AM via cascade

Small AM via cascade

Small ΔM via cascade and DM

✓ Solved by inverting the following functions:

$$M_{j au au}^{ ext{peak}} = X_1(m_{1/2}, m_0)$$
 $M_{ au au}^{ ext{peak}} = X_2(m_{1/2}, m_0, aneta, A_0)$
 $M_{ ext{eff}}^{ ext{peak}} = X_3(m_{1/2}, m_0)$
 $M_{ ext{eff}}^{(b) ext{peak}} = X_4(m_{1/2}, m_0, aneta, A_0)$

$$\left[\Omega_{\widetilde{\chi}_1^0}h^2 = Z(m_0, m_{1/2}\tan\beta, A_0)\right]$$

$$\delta\Omega_{\tilde{\chi}_{1}^{0}}h^{2}/\Omega_{\tilde{\chi}_{1}^{0}}h^{2} = 6.2\% (30 \text{ fb}^{-1})$$

$$= 4.1\% (70 \text{ fb}^{-1})$$

Small AM via VBF

Challenge:

How can we probe the colorless SUSY sector if the first two generations are heavy?

We will use VBF topology: Tagging VBF jets

Refs (For example):

A. Datta, P. Konar, and B. Mukhopadhyaya, PRL 88 (2002) 181802.

G. Giudice, T. Han, K. Wang, and L.T. Wang, PRD 87 (2013) 035029

Dutta, Gurrola, Kamon, John, Sinha, Shledon; Phys.Rev. D87 (2013) 035029

A.G. Delannoy, B. Dutta, A. Gurrola, W. Johns, T. Kamon, E. Luiggi, A. Melo,

P. Sheldon, K. Sinha, K. Wang, S. Wu, PRL 111 (2013) 061801

VBF For small △M

VBF tagged jets (2 energetic jets with large $\Delta\eta$ separation: large M(jj) in forward region, opposite hemispheres)

VBF production topology in transverse plane

Compressed SUSY Via VBF

Direct probes of charginos, neutralinos and sleptons:
 Do not have strong limits from the LHC (depends on Dm

The weak Bosons from protons can produce them
 We need special search strategies

Two high E_⊤ forward jets in opposite hemispheres with large dijet invariant mass

Compressed SUSY Via VBF

$$pp \rightarrow \widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{1}^{\pm} jj, \widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{1}^{\mp} jj, \widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{2}^{\pm} \widetilde{\chi}_{2}^{0} jj, \widetilde{\chi}_{2}^{0} \widetilde{\chi}_{2}^{0} jj$$

For:
$$m_{\chi_1^{\pm}}, m_{\chi_2^0} > m_{\widetilde{l}} > m_{\chi_1^0}$$

Signal:
$$\geq 2j + 2\tau + \text{ missing energy, } \geq 2j + 2\mu + \text{ missing energy}$$

 \rightarrow Small mass (Δ m) difference between chargino and neutralino

Dutta, Gurrola, Kamon, John, Sinha, Shledon; Phys.Rev. D87 (2013) 035029

Charginos, Neutralinos via VBF

2 jets with $p_T(j) > 50 \text{ GeV}$; $p_T(j_1) > 75 \text{ GeV}$

$$|\Delta\eta| > 4.2; \ \eta_1 \cdot \eta_2 < 0$$

$$M(j_1, j_2) > 650 \,\text{GeV}; \text{MET} > 75 \,\text{GeV}$$

2 Benchmark Scenarios

VBF Kinematics

$$M(\widetilde{\chi}_1^0) = 90 \text{ GeV}$$

$$M(\widetilde{\chi}_1^0) = 90 \text{ GeV}$$

$$M(\widetilde{\tau}_1^+) - M(\widetilde{\chi}_1^0) = 30 \text{ GeV}$$

Signal Characteristics: Large MET, large M_{ii} , large p_T jets

Phys. Rev. D 87, 035029 (2013)

Signal: ≥ 2j+2τ+missing energy

2 jets each with $p_T>50$ GeV, leading $p_T>75$ GeV $|\Delta\eta(j_1,j_2)|>4.2, \ \eta_{j1}\eta_{j2}<0, \ M_{j1j2}>650$ GeV

Signal: $\geq 2j + 2\tau + \text{missing energy}$

$$m_{\widetilde{\chi}_1^{\pm}} \sim m_{\widetilde{\chi}_2^0} = 180 \text{ GeV},$$

$$\sqrt{s}=8$$
 TeV

Lum: 25 fb⁻¹

	Signal	Z+jets	$W+{ m jets}$	WW	WZ
VBF cuts	4.61	10.9	$3.70 imes 10^3$	97.0	19.0
$E_{\mathrm{T}} > 75, b$ -veto	4.33	0.27	$5.29 imes 10^2$	17.6	3.45
2τ , inclusive	0.45	0.06	0.23	0.09	0.04
$(S/\sqrt{S+B})$			2.4		
$\tau^{\pm}\tau^{\pm}$	0.21	0	0.11	0.02	0.01
$(S/\sqrt{S+B})$			1.8		
$\tau^{\pm}\tau^{\mp}$	0.24	0.06	0.12	0.07	0.03
$(S/\sqrt{S+B})$			1.7		

Two τ 's with p_T >20 GeV in η < 2.1, with $\Delta R(\tau\tau)$ > 0:3. All τ 's are hadronic The τ ID efficiency is assumed to be 55% and the jet $\rightarrow \tau$ Misidentification rate is taken to be 1%,

Signal: ≥ 2j+2τ+missing energy

Signal: $\geq 2j+2\mu+missing$ energy

2 jets each with $p_T > 50$ GeV, leading $p_T > 75$ GeV $|\Delta \eta(j_1,j_2)| > 4.2$, $\eta_{i1}\eta_{i2} < 0$, $M_{i1i2} > 650$ GeV

Signal: $\geq 2j + 2\mu + \text{ missing energy}$ $m_{\gamma_{i}^{\pm}} \sim m_{\gamma_{0}^{0}} = 180 \text{ GeV},$

$$m_{\widetilde{\chi}_1^{\pm}} \sim m_{\widetilde{\chi}_2^{0}} = 180 \text{ GeV}$$

	Signal	Z+jets	W+jets	WW	WZ
VBF cuts	4.61	10.9	3.70×10^3	97.0	19.0
$E_{\mathrm{T}} > 75$	4.33	0.27	$5.29 imes 10^2$	17.6	3.45
2μ , inclusive	1.83	0.15	0	0.12	0.19
$(S/\sqrt{S+B})$			6.0		
$\mu^{\pm}\mu^{\pm}$	0.87	0	0	0.03	0.05
$(S/\sqrt{S+B})$			4.5		
$\mu^{\pm}\mu^{\mp}$	0.96	0.15	0	0.09	0.14
$(S/\sqrt{S+B})$			4.1		

$$-\sqrt{s}=8$$
 TeV

Lum: 25 fb⁻¹

Two isolated μ 's with $p_T > 20$ GeV in $\eta < 2.1$

For
$$3\sigma: m_{\widetilde{\chi}_1^{\pm}} \sim m_{\widetilde{\chi}_2^{0}} = 330 \text{ GeV}$$

Signal: ≥ 2j+2µ+missing energy

Compressed Sleptons Via VBF

Small mass gap measurements using VBF topology→ Various Coannihilation regions:

$$\widetilde{\mu}, \widetilde{e} - \widetilde{\chi}_1^0, \widetilde{\tau} - \widetilde{\chi}_1^0, \widetilde{\chi}_1^{\pm}, \widetilde{\chi}_2^0 - \widetilde{\chi}_1^0, \widetilde{t} - \widetilde{\chi}_1^0, \hat{b} - \widetilde{\chi}_1^0$$

$$pp o \widetilde{\mu} \widetilde{\mu} jj$$
 Signal: $2j+2\mu+$ missing energy, $pp o \widetilde{\nu} \widetilde{\mu} jj$ Signal: $2j+1\mu+$ missing energy, $\Delta m = m_{\widetilde{\mu}} - m_{\widetilde{\chi}^0_1} = 15 GeV$

Compressed Sleptons Via VBF

LHC 14 TeV data): Signal: $2j+\geq 1\mu+$ missing energy,

 3σ reach is 150 GeV for 3000 fb⁻¹

Dutta, Ghosh, Gurrola, Kamon, Sinha, Wang, Wu; to appear

Stop at the LHC

Utilize Stop decay modes to search charginos, sleptons, neutralinos

Ex. 1 χ_1^0 is mostly bino and χ_2^0 is wino

$$\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0$$

Stop can identified via fully hadronic or 1 lepton plus multijet final states

[Bai, Cheng, Gallichio, Gu, JHEP 1207 (2012) 110; Han, Katz, Krohn, Reece, JHEP 1208 (2012) 083; Plehn, Spannowsky, Takeuchi, JHEP 1208 (2012) 091; Kaplan, Rehermann, Stolarski, JHEP 1207 (2012) 119; Dutta, Kamon, Kolev, Sinha, Wang, Phys.Rev. D86 (2012) 075004]

Ex. 2 $\chi_{1,2}^0$ are mostly Higgsino

Topness variable to identify stops

Grasser, Shelton, Phys.Rev.Lett. 111 (2013) 121802

Ex. 3 χ_1^0 is mostly Bino-Higgsino Correct relic density

For lighter sleptons

$$\tilde{t}_1 \rightarrow t + \tilde{\chi}_2^0 \rightarrow t + l + \tilde{l}^* \rightarrow t + l + \bar{l} + \tilde{\chi}_1^0,
\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^{\pm} \rightarrow t + \nu + \tilde{l} \rightarrow t + l + \nu + \tilde{\chi}_1^0,
\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0$$

2 jets+ 2 leptons (OSSF-OSDF) +missing energy

Dutta, Kamon, Kolev, Wang, Wu, Phys. Rev. D 87, 095007 (2013)

→ Existence and type of DM particle, hard to calculate the DM content

Small ΔM have cosmological consequences

Signal: 2 j + 2 b + 1 l + missing energy

 $\sim \tilde{t}$ Compressed Region: $\Delta M \equiv m_{\widetilde{t}} - m_{\chi_1^0} = 180$,165 GeV

$$\Delta M < m_t : \widetilde{t} \to b + W + \widetilde{\chi}_1^0$$

$$\Delta M > m_t : \widetilde{t} \to t + \widetilde{\chi}_1^0$$

2 leading jets (j_1,j_2) : $p_T(j_1,j_2) > (75,50)$ GeV, $|\Delta \eta(j_1,j_2)| > 3.5$ and $\eta_{j1}\eta_{j2} < 0$, $M_{j1j2} > 500$ GeV; MET is optimized One isolated lepton $(p_T > 20)$, two loose b jets $(p_T > 30)$: $\eta < 2.5$

$$\Delta M > m_t : \widetilde{t} \to t + \widetilde{\chi}_1^0$$

TABLE I: Compressed scenario: Summary of the effective cross-sections (fb) for different benchmark signal points as well as the $t\bar{t}$ background at LHC14. Masses and momenta are in GeV.

$(m_{ ilde{t}},m_{ ilde{\chi}_1^0})$	Selection	Signal	$t\bar{t}+{ m jets}$
	VBF	95.7	16774
(300, 120)	1 lepton	22.1	3587
0. 9. 0	2 b-jets	9.70	1612
	$E_{\rm T} > 50$	8.00	924
	VBF	25.2	16774
(400, 220)	1 lepton	5.93	3587
30 PE	2 b-jets	2.84	1612
	$E_T > 100$	1.48	337
	VBF	7.50	16774
(500, 320)	1 lepton	1.69	3587
	2 b-jets	0.74	1612
	$E_T > 150$	0.27	123

$$\Delta M < m_t : \widetilde{t} \to b + W + \widetilde{\chi}_1^0$$

TABLE II: Summary of the effective cross-sections (fb) for different benchmark signal points as well as the $t\bar{t}$ background at LHC14. Masses and momenta are in GeV.

2			
$(m_{ ilde{t}},m_{ ilde{\chi}_1^0})$	Selection	Signal	tt+jets
	VBF	465.6	38787.8
(250, 85)	1 lepton	93.5	8107.9
$\Delta M = 165~{\rm GeV}$	2 b-jets	25.3	3096
	$E_T > 100$	12.9	682.5
	542-544-094004		
	VBF	217.9	38387.8
(300, 135)	1 lepton	42.8	8107.9
$\Delta M = 165 \text{ GeV}$	2 b-jets	11.5	3096
3	$E_{\rm T} > 100$	6.7	682.5
	TIDE		
WOOTHFEE WORKERS	$_{ m VBF}$	50.6	38387.8
(400, 235)	1 lepton	10.3	8107.9
$\Delta M = 165 \text{ GeV}$	2 b-jets	2.76	3096
	$E_{\rm T} > 200$	1.92	682.5
	VBF	194.2	38387.8
(000 150)	Con No. Vo.	0.0000000000000000000000000000000000000	6-400-400 B-400 - 15-00
(300, 150)	1 lepton	39.9	8107.9
$\Delta M = 150 \text{ GeV}$	2 b-jets	8.09	3096
	$E_{\rm T} > 100$	5.00	682.5

The significance reduces to 3σ with 3% sys . for 200 GeV stop

Dutta, Flanagan, Gurrola, Kamon, Sheldon, Sinha, Wang, Wu; 1312.1348

Compressed Sbottom

We probe this region

Compressed Sbottom Via VBF

Signal: 2 j + 1 b + missing energy

Compressed Region: $\Delta M \equiv m_{\widetilde{b}} - m_{\chi_1^0} = 5 \, GeV$

Dutta, Gurrola, Kamon, Sinha, Wang, S. Wu, Z. Wu; to appear

Signal: 2 j + 1 b + missing energy:

(Delphes,140 pileup): 300 GeV with 3σ (5% syst.@3000fb⁻¹) [similar reach for 300 fb⁻¹ with 0 pileup]

Signal: 2 j + missing energy:

(Delphes, 140 pileup): 300 GeV with 3σ (5% syst.@3000fb⁻¹)

Compressed Sbottom Via VBF

Significance vs mass with systematics (Preliminary)

VBF + MET + B @ 0PU

Background: 655 with 300/fb

_	0						
	Mass	XS(pb)	Eff.	S/B	$\frac{S}{\sqrt{S+B}}$	5% Sys.	10% Sys.
	15	704.190002	0.62	2015.71	1148.75	1148.29	1146.89
	50	74.722855	0.57	196.78	358.10	356.63	352.32
	100	11.100344	0.29	15.00	95.96	91.40	80.83
	150	2.699331	0.54	6.68	61.67	55.99	45.30
	200	0.905649	0.22	0.91	16.89	12.39	8.03
	300	0.158608	0.27	0.20	4.67	3.04	1.84
	400	0.040765	0.32	0.06	1.51	0.95	0.56
	500	0.012975	0.21	0.01	0.32	0.20	0.12
	600	0.004798	0.21	0.00	0.12	0.07	0.04
	700	0.001958	0.26	0.00	0.06	0.04	0.02
	1000	0.000194	0.20	0.00	0.00	0.00	0.00

- \mathcal{H}_T - \mathcal{E}_T asymmetry cut: $|\mathcal{H}_T \mathcal{E}_T|/(\mathcal{H}_T + \mathcal{E}_T) < 0.2$ for 0 pileup, 0.5 for 140 pileup interactions
 - \circ protect against occasional loss of high p_T jets due to pileup subtraction
- VBF selection: (Using non b-tag jets for VBF jets and central jet veto)
 - \circ $H_T > 50 GeV$
 - $\circ p_{\mathrm{T}}^{\mathrm{jet}1,2} > 50 \mathrm{GeV}$
 - $|\eta^{\rm jet1,2}| < 5$
- $|\eta^{\text{jet1}} \eta^{\text{jet2}}| > 4.2$
- $o n^{\text{jet}1} \cdot n^{\text{jet}2} < 0$
- $p_{\rm T}^{\rm jet1} > 50 \,{\rm GeV}$ (200 GeV when studying 140 pileup scenarios)
- $p_{\mathrm{T}}^{\mathrm{jet2}} > 50 \mathrm{GeV}$ (100GeV when studying 140 pileup scenarios)
- $M_{ii} > 1500 \text{GeV}$
- Veto a third jet with $p_T^{\rm jet3} > 30 \, \text{GeV}$ lying between leading two jets
- Veto a lepton (electron, muon, and tau)
- *H*_T > 200GeV
- Exactly one a b-tagged jet
- PT of this b-tagged jet < 80GeV

VBF + MET

Total BK: 34165 with 300/fb

10tal B11. 31103 With 300/18							
Mass(GeV)	XS(pb)	Eff.	S/B	$\frac{S}{\sqrt{S+B}}$	5% Sys.	10% Sys.	
15	704.190002	0.04	2.47	245.30	48.49	24.61	
50	74.722855	4.27	28.04	961.82	484.50	269.22	
100	11.100344	8.50	8.29	502.69	157.44	81.78	
150	2.699331	12.99	3.08	281.76	60.15	30.60	
200	0.905649	14.46	1.15	144.96	22.71	11.46	
300	0.158608	19.92	0.28	45.37	5.51	2.77	
400	0.040765	22.86	0.08	14.54	1.63	0.82	
500	0.012975	24.24	0.03	5.03	0.55	0.28	
600	0.004798	25.11	0.01	1.95	0.21	0.11	
700	0.001958	26.61	0.00	0.84	0.09	0.05	
1000	0.000194	27.72	0.00	0.09	0.01	0.00	

- \mathcal{H}_T - $\not\!\!E_T$ asymmetry cut: $|\not\!\!H_T \not\!\!E_T|/(\not\!\!H_T + \not\!\!E_T) < 0.2$ for 0 pileup, 0.5 for 140 pileup interactions
 - \circ protect against occasional loss of high p_T jets due to pileup subtraction
- VBF selection:
 - \circ $H_{\rm T} > 50 {\rm GeV}$
 - $ho p_{\mathrm{T}}^{\mathrm{jet1,2}} > 50 \mathrm{GeV}$ $ho |\eta^{\mathrm{jet1,2}}| < 5$

 - $\circ |\eta^{
 m jet1} \eta^{
 m jet2}| > 4.2$
 - $\circ \eta^{\text{jet1}} \cdot \eta^{\text{jet2}} < 0$
- $p_{\rm T}^{\rm jet1} > 50 \,{\rm GeV}$ (200 GeV when studying 140 pileup scenarios)
- $p_{\rm T}^{\rm jet2} > 50 {\rm GeV}$ (100 GeV when studying 140 pileup scenarios)
- $M_{ii} > 1500 \text{GeV}$
- Veto a third jet with $p_T^{\rm jet3} > 30 {\rm GeV}$ lying between leading two jets
- Veto a b-tagged jet
- Veto a lepton (electron, muon, and tau)
- ℋ_T > 200GeV

Compressed Sbottom Via VBF

Significance vs mass with systematics with pile-up

VBF + MET @ 140PU

Total	RK.	160123	
I OLAI	DIV.	± 00125	

Mass(GeV)	XS(pb)	Eff.	S/B	$\frac{S}{\sqrt{S+B}}$	5% Sys.	10% Sys.
15	704.190002	0.10	13.46	1416.24	264.41	133.97
50	74.722855	0.62	8.74	1120.32	172.63	87.09
100	11.100344	1.46	3.04	605.28	60.51	30.37
150	2.699331	2.54	1.28	339.88	25.60	12.83
200	0.905649	2.80	0.48	156.53	9.48	4.75
300	0.158608	4.50	0.13	50.28	2.67	1.34
400	0.040765	5.35	0.04	16.03	0.82	0.41
500	0.012975	5.80	0.01	5.60	0.28	0.14
600	0.004798	6.23	0.01	2.24	0.11	0.06
700	0.001958	6.59	0.00	0.97	0.05	0.02
1000	0.000194	6.99	0.00	0.10	0.01	0.00

Compressed Higgsino Via VBF

Lightest neutralino: Higgsino

$$\widetilde{\chi}_1^0, \widetilde{\chi}_1^{\pm}, \widetilde{\chi}_2^0$$
 : similar mass

We consider 10 GeV mass difference with final state

2 leading jets (j_1,j_2) : $p_T(j_1,j_2) > (75,50)$ GeV, $|\Delta \eta(j_1,j_2)| > 3.5$ and $\eta_{j1}\eta_{j2} < 0$, $M_{j1j2} > 500$ GeV; MET is optimized One isolated lepton $(p_T > 20)$, two loose b jets $(p_T > 30)$: $\eta < 2.5$

<u>Preselection</u>: missing $E_T > 50$ GeV, 2 leading jets $(j_1, j_2) : p_T(j_1), p_T(j_2) > 30$

GeV, $|\Delta \eta(j_1, j_2)| > 4.2$ and $\eta_{i1} \eta_{i2} < 0$.

Optimization: Tagged jets: $p_T > 50$ GeV, $M_{j1j2} > 1500$ GeV;

Events with leptons($l = e; \mu; \tau_h$) and b-quark jets: rejected.

Missing E_T : optimized for different value of the LSP mass.

Jet energy scale uncertainty ~20% change the significance by 4%

Delannoy, Dutta, Kamon, Sinha, Wang, Wu et al; Phys.Rev.Lett. 111 (2013) 061801

Simultaneous fit of the observed rate, shape of missing energy distribution:

Models with Double Charged HiggsVia VBF

$$L_{Y} = ih_{ij}^{M} \psi_{iL}^{T} C \tau_{2} \Delta_{L} \psi_{jL} + cc$$

$$\Delta_L = \begin{pmatrix} \delta_L^+/\sqrt{2} & \delta_L^{++} \\ \delta_L^0 & -\delta_L^+/\sqrt{2} \end{pmatrix}$$

At the LHC:

$$PP \rightarrow \delta^{++}\delta^{--}jj, PP \rightarrow \delta^{\pm\pm}\delta^{\mp}jj$$

Two scenarios

$$1.BR (\delta_L \to \tau \tau) = 100 \%$$

$$2.BR (\delta_L \to \mu \mu) = 50 \%, BR (\delta_L \to ee) = 50 \%$$

Double Charged Higgs Via VBF

 $1.BR(\delta_L \to \tau\tau) = 100\%$

$(m_{\delta^{++}_+}, m_{\delta^+})$		Selection	Signal	ZZjj	WZjj
$[(m_{\delta_L^{++}},m_{\delta^+}) \ [\mathrm{GeV}]$	7	Cuts	[fb]	[fb]	[fb]
		Basic cuts	2.222 ± 0.009	585.9 ± 1.4	3513 ± 8
		VBF cuts	0.4655 ± 0.0040	39.98 ± 0.36	211.8 ± 2.1
	100,000 52" 854-1000		0.0196 ± 0.0008		
(210, 170)	$\epsilon = 50\%, f = 1\%$	$ au_h p_T { m cuts}$	0.0147 ± 0.0007	0.0016 ± 0.0005	0.0070 ± 0.0021
			0.0120 ± 0.0006		
			0.0487 ± 0.0013		
	$\epsilon = 70\%, f = 2\%$				
	7	$ ot\!\!\!E_{ m T}$ cut	0.0292 ± 0.0010	0.0020 ± 0.0005	0.0112 ± 0.0027

2 leading jets (j_1,j_2) : $p_T(j_1,j_2) > (50,50)$ GeV $|\Delta\eta(j_1,j_2)| > 4$ and $\eta_{j1}\eta_{j2} < 0$, $M_{j1j2} > 500$ GeV; MET>50 GeV

At least 3 τ_h with $p_T > 50$, 50 ,30 GeV

Dutta, Eusebi, Ghosh, Gao, Kamon, 1404.0685

Double charged HiggsVia VBF

$$2.BR(\delta_L \rightarrow \mu\mu) = 50\%, BR(\delta_L \rightarrow ee) = 50\%$$

$(m_{\delta^{++}_{\bar{\tau}}}, m_{\delta^{+}_{\bar{\tau}}})$	Selection	Selection Signal		WZjj
[GeV]	Cuts	[fb]	[fb]	[fb]
	Basic cuts	0.1540 ± 0.0011	585.9 ± 1.4	3513 ± 8
	VBF	0.0403 ± 0.0005	39.98 ± 0.36	211.8 ± 2.1
(460, 420)	≥ 3 leptons	0.0317 ± 0.0005	0.2131 ± 0.0028	1.702 ± 0.033
	lepton p_T cuts	0.0301 ± 0.0005	0.0126 ± 0.0007	0.1015 ± 0.0080
	Z-veto	0.0291 ± 0.0005	0.0005 ± 0.0001	0.0057 ± 0.0019
	δ_L^{++} mass window	0.0285 ± 0.0005	0.0001 ± 0.0001	0.0002 ± 0.0002

TABLE I. Summary of the signal and the background cross-sections and corresponding statistical errors at our chosen benchmark point, after each kinematical cut in the light lepton decay scenario. The LHC energy is 14 TeV.

2 leading jets (j_1,j_2) : p_T (j_1,j_2) >(50,50) GeV , $|\Delta\eta(j_1,j_2)|$ > 4 and $\eta_{j1}\eta_{j2}$ < 0, M_{j1j2} > 500 GeV; MET>50 GeV At least 3 leptons with p_T > 120, 100, 50, 30

Conclusion

- > Measuring small mass gaps at the LHC is very important
- ➤ Small mass gaps between LSP and NLSP have cosmological consequences
- >Small mass gaps can be measured from cascade decays of squarks, gluinos
- For heavier colored particles, VBF topology is very helpful in establishing signals with small mass gaps

Back-up

